R 軟體 - Kaplan-Meier 存活曲線的繪製

蔡靜雯 副統計分析師

存活分析中很常使用存活曲線呈現追蹤時間(或存活時間)和感興趣事件的發 生情況,或者藉由不同群體之間的存活曲線圖形比較存活差異,本期 eNews 內容 將介紹如何使用 survminer 套件繪製基本存活曲線,以及透過調整 ggsurvplot() 函數中的指令,進一步客製化存活曲線。

1.存活曲線介紹

常見估計存活函數的方法有生命量表、Kaplan-Meier法、Nelson-Aalen法等,這 些都是不需要有存活時間分配(distribition)的假設條件,可從存活曲線圖形中方便 觀察出存活時間中位數和存活時間對應的存活百分比。

- 生命量表方法(life table method)或精算法(actuarial method)
 為流行病學和保險學中估計存活函數的典型方法,以一群人在某時段的存活人 數估計,藉由將觀測時間分割成一連串小的時間區間(不互相重疊),區間不須 相同時間長度(但大多數都分割成相同長度),只需知道每一區間的總人數和死 亡人數,不需要個人的資訊。
- 2. Kaplan-Meier方法(product-limit method)

為 Kaplan 和 Meier 在1958年提出的 Product-Limit(PL) 估計式,類似精算法的估計,差別在生命量表的精算估計是一群人的匯整資料,而 Kaplan-Meier 方法 是保留每一個時間點的所有資訊,以個人死亡時間估計,因此,需知道每一個 人確切的死亡時間。

2. Kaplan-Meier 存活曲線圖形所需的基本變項

繪製存活曲線圖形有兩個基本變項是必備的,分別是追蹤時間(例如:追蹤天數、追蹤月、追蹤年的連續變項)和感興趣事件是否發生(例如:有無死亡、有無復

發的二元變項),若要比較不同群體或類別之間的存活曲線,就需再加上一個類別 變項(例如:性別、治療方式、種族等)。

3.範例資料檔

在這期 eNews 使用的資料是由美國4個研究肺癌的醫學中心,所整合出來的 樣本資料。變數說明如下:

變數名稱	變數說明
SITE	4個研究中心
AGE	年齡(歲)
GENDER	性別(Female;Male)
gender	性別(0, Female;1, Male)
СНЕМО	化療與否(0, No; 1, Yes)
RT	放射治療(Yes;No;NA:未知)
rt	放射治療(0, 沒有;1, 有;NA, 未知)
Vital.Status	研究結束時存活狀態(Alive;Dead)
vital_status	研究結束時存活狀態(0, 存活; 1, 死亡)
FIRST_PROGRESSION_OR_RELAPSE	術後第一次復發與否(Yes; No)
MONTHS_TO_FIRST_PROGRESSION	手術後到第一次復發時間(單位:月)
SMOKING	抽菸狀態(Never smoked, Smoked in the
SMOKING	past, Currently smoking)
N STACE	癌症N分期(N0, 第0期; N1, 第一期; N1 or
	N2,第一或二期)
TSTACE	癌症T分期(T1,第一期;T2 or T3,第二或三
	期;T2, T3 or T4,第二、三或四期)
SURVIVAL_MONTHS	存活時間(單位:月)

資料來源可在數據處健康資料加值暨統計中心的檔案下載網頁下載,請參考以下 路徑,臺北醫學大學數據處首頁 > 二級單位 健康資料加值暨統計中心 > 檔案下 載-資料檔 > 點選肺癌研究檔案下載或點選以下網址

https://ods.tmu.edu.tw/upload_file/tmudc/526/15880545261.csv

肺癌研究檔案下載的格式為csv檔,另存命名為 lung cancer data,檔案內容呈現如下圖:

2

	Α	В	С	D	E	F	G	н	1	J	К	L	М	Ν	0
1	SITE	GENDER	gender	AGE	СНЕМО	RT	rt	Vital.Stat us	vital_statu s	FIRST_P ROGRES SION_OR RELAPS	MONTHS _TO_FIR ST_PRO GRESSIO	SMOKING	N_STAG E	T_STAGE	SURVIV AL_MON THS
2	DFCI	Female	0	55	No	No	0	Alive	0	No	NA	Smoked in the past	NO	T2 or T3	110
3	DFCI	Female	0	41	No	No	0	Alive	0	Yes	2	Smoked in the past	NO	T2 or T3	98
4	DFCI	Male	1	47	Yes	No	0	Alive	0	No	NA	Smoked in the past	NO	T2 or T3	110
5	DFCI	Male	1	73	NA	NA	NA	Alive	0	NA	NA	Never smoked	NO	T2 or T3	66
6	DFCI	Female	0	63	NA	NA	NA	Dead	1	Yes	17	Currently smoking	N1	T2 or T3	29

4. R語法說明與範例演練

◆ 讀入資料檔 lung cancer data 並 檢查讀入的資料內容和結構

> 使用 read.csv() 指令讀入檔名為lung cancer data的檔案,並且命名為lung cancer

【語法】指定在程式中欲使用的檔名= read.csv("檔案儲存路徑\\檔案名稱.csv")

其中,檔案儲存路徑中的斜線,需改為雙斜線或反斜線

[R程式碼]-讀入資料

lung_cancer=read.csv("J:\\eNews 第四十六期\\lung cancer data.csv")
lung cancer=read.csv("J:/eNews 第四十六期/lung cancer data.csv")

[R程式碼] - 檢查是否成功讀入資料以及確認變數資料

View(lung_cancer) #以表格形式的視窗呈現,可查看整體資料
head(lung_cancer) #查看部份筆資料(預設是前6筆)
str(lung_cancer) #查看資料結構

> View(lung_cancer)

😨 Data: lung_cancer

		0-									
		SITE	GENDER	gender	AGE	CHEMO	RT	rt	Vital.Status	vital_status	FIRST_PROGRESSION
ſ	1	DFCI	Female	0	55	No	No	0	Alive	0	No
	2	DFCI	Female	0	41	No	No	0	Alive	0	Yes
	3	DFCI	Male	1	47	Yes	No	0	Alive	0	No
	4	DFCI	Male	1	73	NA	NA	NA	Alive	0	NA
	5	DFCI	Female	0	63	NA	NA	NA	Dead	1	Yes
	6	DFCI	Male	1	72	NA	NA	NA	Dead	1	Yes
	7	DFCI	Female	0	57	NA	NA	NA	Alive	0	NA
	8	DFCI	Female	0	55	NA	NA	NA	Alive	0	NA

>	head	(lung_o	cancer)						
	SITE	GENDER	gender	AGE	CHEMO	RT	rt	Vital.Status	vital_status
1	DFCI	Female	e 0	55	No	No	0	Alive	c
2	DFCI	Female	e 0	41	No	No	0	Alive	C
3	DFCI	Male	e 1	47	Yes	No	0	Alive	C
4	DFCI	Male	e 1	73	<na></na>	<na></na>	NA	Alive	C
5	DFCI	Female	e 0	63	<na></na>	<na></na>	NA	Dead	1
6	DFCI	Male	e 1	72	<na></na>	<na></na>	NA	Dead	1
	FIRST	r proge	RESSION	OR RI	ELAPSE	MONT	HS	TO FIRST PROGR	ESSION
1		-	_	-	No		_		NA
2					Yes				2
3					No				NA
4					<na></na>				NA
5					Yes				17
6					Yes				5
			SMOKING	N_S	TAGE	T_STA	GE	SURVIVAL_MONTH	S
1	Smoke	ed in t	the past		NO T	2 or	ΤЗ	- 11	0
2	Smoke	ed in t	the past		NO T	2 or	Т3	9	8
3	Smoke	ed in t	the past		NO T	2 or	TЗ	11	0
4		Never	smoked		NO T	2 or	ΤЗ	6	6
5	Curi	rently	smoking		N1 T	2 or	ΤЗ	2	9
6		Never	smoked		NO T	2 or	ΤЗ		7

[R程式碼] - 查看資料結構

#查看資料結構(資料筆數、變數數量、變數名稱和變數類型) str(lung cancer) > str(lung cancer) 'data.frame': 478 obs. of 15 variables: : chr "DFCI" "DFCI" "DFCI" "DFCI" ... \$ SITE \$ GENDER : chr "Female" "Female" "Male" "Male" . \$ gender : int 0011010010... \$ AGE : int 55 41 47 73 63 72 57 55 64 40 ... \$ CHEMO "No" "No" "Yes" NA ... : chr "No" "No" "No" NA ... \$ RT : chr \$ rt : int 0 0 0 NA NA NA NA NA NA NA ... : chr "Alive" "Alive" "Alive" "Alive" . \$ Vital.Status \$ vital status : int 0000110000... \$ FIRST PROGRESSION OR RELAPSE: chr "No" "Yes" "No" NA ... \$ MONTHS TO FIRST PROGRESSION : num NA 2 NA NA 17 5 NA NA NA NA ... \$ SMOKING "Smoked in the past" "Smoked in t : chr \$ N STAGE : chr "NO" "NO" "NO" ... : chr "T2 or T3" "T2 or T3" "T2 or T3" \$ T STAGE \$ SURVIVAL MONTHS : num 110 98 110 66 29 7 53 63 23 62 ..

◆ 安裝繪製Kaplan-Meier存活曲線所需套件,並在開始使用前叫出宣告使用 survival 套件:執行存活分析,估計 Kaplan-Meier 存活函數和檢定 survminer 套件:繪製Kaplan-Meier存活曲線圖

[R程式碼] - 安裝套件和宣告使用套件

```
# 安裝套件 - 同一台電腦安裝成功, 之後使用 library()叫出, 即可使用, 不用再重新
安裝一次
install.packages("survival")
install.packages("survminer")
# 使用 library()叫出宣告要使用的套件
library(survival)
library(survival)
```

確定讀入的資料和宣告使用的套件都沒問題後,就可以開始進行下一步,繪製 Kaplan-Meier存活曲線圖形。

範例4-1、整體資料中所有人的存活曲線

如前面提到,繪製存活曲線圖形有兩個基本變項是必備的,追蹤時間和感興趣 事件是否發生,對應範例檔肺癌研究檔案中的變項,即為 SURVIVAL_MONTHS(存活 時間)和 vital_status(研究結束時存活狀態,0:存活;1:死亡),其中要注意到的 是,感興趣事件是否發生的資料記錄方式要為 0、1,未發生為 0,有發生為 1。

1.首先使用 survival套件計算存活函數

> 使用survival套件中的 survfit()函數計算存活函數

```
【語法】survfit(Surv(time, event)~1, data)
其中,
time 為追蹤時間
event 為感興趣事是否發生(1:有發生,0:未發生)
data 欲分析的檔案
```

> 使用survminer套件中的ggsurvplot()函數,繪製Kaplan-Meier存活曲線圖

【語法】ggsurvplot(fit)

其中, fit 為 survfit()函數估計的存活函數

[R程式碼]-

fit <- survfit (Surv (SURVIVAL_MONTHS, vital_status) ~ 1, data = lu ng_cancer) # 使用 survfit 函數計算存活函數並存檔命名為 fit fit # 整筆檔案計算存活函數的資訊說明 summary(fit) # 列出每一筆感興趣事件發生時的存活函數計算結果 ggsurvplot(fit) # Kaplan-Meier 存活曲線圖

[output 解讀]

有9筆資料在存活函數計算過程被刪除,n=469為實際有使用到的資料筆數, event=253為感興趣事件有發生的筆數,在此範例檔即為死亡人數。median=68.6、 0.95LCL=57.3、0.95UCL=77.6 分別為追蹤時間(或存活時間)中位數、95%信賴區間下 界和上界。

<pre>> fit <- survfit(Surv(SURVIVAL_MONTHS, vital_status) ~ 1, data = lung_cancer) > fit</pre>
Call: survfit(formula = Surv(SURVIVAL_MONTHS, vital_status) ~ 1, data = lung_cancer)
因為不存在,9 個觀察量被刪除了
n events median 0.95LCL 0.95UCL
[1,] 469 253 68.6 57.3 77.6

[output 解讀]

使用summary()函數,同樣的也有說明9筆資料被刪除,但會詳細列出每一筆感興 趣事件發生時的存活函數計算結果,包含事件發生時的追蹤時間(存活時間)、在對 應的追蹤時間之前,事件還未發生的人數、在對應的追蹤時間,事件發生的人數、

存活率(或未發生率)…等

> summar	y(fit)										
Call: su	rvfit(f	formula =	= Surv(SU	RVIVAL MO	ONTHS, vital statu	us) ~ 1, data	= lung cancer)				
				-							
因為不存	因為不存在,9 個觀察量被刪除了										
time	n.risk	n.event	survival	std.err	lower 95% CI uppe	er 95% CI					
0.03	469	1	0.998	0.00213	0.994	1.000					
0.43	468	1	0.996	0.00301	0.990	1.000					
0.53	467	1	0.994	0.00368	0.986	1.000					
2.00	466	1	0.991	0.00425	0.983	1.000					
2.24	465	1	0.989	0.00474	0.980	0.999					
2.27	464	1	0.987	0.00519	0.977	0.997					
2.40	463	1	0.985	0.00560	0.974	0.996					
2.70	462	1	0.983	0.00598	0.971	0.995					
3.25	461	1	0.981	0.00633	0.968	0.993					
2,20	4.00		0.070	0.00007	0.000	0.000					

範例4-2、比較不同群體之間的存活曲線

這邊以範例檔中的癌症N分期作為分類,比較不同癌症N分期之間的存活曲線。

同樣的要先使用 survival套件計算存活函數,再使用 survminer套件繪製 Kaplan-Meier 存活曲線圖

> 使用survival套件中的 survfit()函數計算存活函數,要注意到的是,整體資料的存活函數計算在survfit()函數中~右邊是放1,若是比較不同群體之間的存活函數時, survfit()函數中~右邊要改放成分組依據的類別變項。

```
【語法】survfit(Surv(time, event)~ var, data)
其中 var 分組依據
```

[R程式碼]-

```
fit2 <- survfit(Surv(SURVIVAL_MONTHS, vital_status) ~ N_STAGE,
data = lung_cancer) # 使用 survfit 函數計算存活函數並存檔命名為 fit2
fit2 # 整筆檔案計算存活函數的資訊說明
summary(fit2) # 列出每一筆感興趣事件發生時的存活函數計算結果
ggsurvplot(fit2) # Kaplan-Meier 存活曲線圖
```

[output 解讀]

有15筆資料在存活函數計算過程被刪除,癌症N分期分成3個類別NO、N1和N1 or N2,

分別呈現3個類別實際有使用到的資料筆數、感興趣事件發生的筆數和追蹤時間(或

存活時間)中位數以及95%信賴區間下界和上界。

[output 解讀]

使用summary()函數,同樣的也有說明15筆資料被刪除,並詳細列出3種癌症N分

期類別,每一筆感興趣事件發生時的存活函數計算結果。

```
> summary(fit2)
Call: survfit(formula = Surv(SURVIVAL MONTHS, vital status) ~ N STAGE,
   data = lung cancer)
因為不存在,15 個觀察量被刪除了
             N STAGE=N0
  time n.risk n.event survival std.err lower 95% CI upper 95% CI
  0.03 316 1 0.997 0.00316 0.991 1.000
  0.43
        315
                 1
                     0.994 0.00446
                                       0.985
                                                   1.000
  2.24 314
                     0.991 0.00546
                                       0.980
                                                   1.000
                 1
       313
                     0 987 0 00629
                                       0 975
                                                   1 000
  4 00
                 1
               N STAGE=N1
  time n.risk n.event survival std.err lower 95% CI upper 95% CI
        24 1 0.958 0.0408 0.8816 1.000
    4
    8
         23
                 1
                     0.917 0.0564
                                      0.8125
                                                  1.000
                     0.833 0.0761
    9
         22
                2
                                      0.6968
                                                  0.997
                                      0.6448
                 1
                     0.792 0.0829
    10
         20
                                                   0.972
                 1 0.750 0.0884
         19
    11
                                      0.5953
                                                   0.945
                                     0.5480
    12
        18
                 1 0.708 0.0928
                                                   0.916
    13
         17
                 2
                     0 625 0 0088
                                       0 4595
                                                   0 852
            N STAGE=N1 or N2
  time n.risk n.event survival std.err lower 95% CI upper 95% CI
                    0.9919 0.0081 0.97613
  0.53 123
                1
                                                   1.000
                 1 0.9837 0.0114
                                     0.96164
  2.00
        122
                                                   1.000
                 1 0.9756 0.0139
  2.27
        121
                                     0.94873
                                                   1.000
                1 0.9675 0.0160 0.93664
1 0.9593 0.0178 0.92508
1 0.9512 0.0194 0.91390
                                                   0.999
  2.40 120
  2.70 119
                                                  0.995
  3 25 118
                                                  0 000
```


[補充說明]

在執行過程中,若有資料被刪除的情況,建議回頭檢查被刪除的原因,以確認 是資料遺失值問題,還是資料整理過程中造成的資料錯誤。在範例4-1和範例4-2中, 分別有9筆和15筆資料被刪除,使用到的變數為 SURVIVAL_MONTHS、vital_status 和 N_STAGE,檢查這3個變數原始資料的分佈情況。

[R程式碼] 檢查被刪除的資料

----- 步驟 1. 確認讀入的資料總筆數 ----str(lung_cancer)

----- 步驟 2. 檢查原始資料的分佈 -----# 連續型變數使用 summary()函數檢查統計量 summary(lung_cancer\$SURVIVAL_MONTHS)

類別變數使用 table() 函數檢查分佈 table(lung_cancer\$vital_status) table(lung_cancer\$N_STAGE)

```
# 使用 is.na() 函數檢查遺失值情況分佈
sum(is.na(lung_cancer$vital_status))
sum(is.na(lung_cancer$N_STAGE))
# vital_status 和 N_STAGE 兩個變數一起檢查,呈現所有遺失值,其中c(9,13,
15)為指定只呈現第 9、13、15 個變數,分別為 vital_status、N_STAGE 和 SU
RVIVAL_MONTHS。
lung_cancer[is.na(lung_cancer$SURVIVAL_MONTH)*1==1 |
is.na(lung_cancer$N_STAGE)*1==1,c(9,13,15)]
```

[output] 使用str() 檢查資料結構,可以看到讀的資料有478筆,15個變數

> str(lung_cancer)		
'data.frame': 478 obs. of 15	variak	oles:
\$ SITE :	chr	"DFCI" "DFCI" "DFCI"
\$ GENDER :	chr	"Female" "Female" "Male" "Male" .
\$ gender :	int	0 0 1 1 0 1 0 0 1 0
\$ AGE :	int	55 41 47 73 63 72 57 55 64 40
\$ CHEMO :	chr	"No" "No" "Yes" NA
\$ RT :	chr	"No" "No" "No" NA
\$ rt :	int	0 0 0 NA NA NA NA NA NA
<pre>\$ Vital.Status</pre> :	chr	"Alive" "Alive" "Alive" "Alive" .
<pre>\$ vital_status :</pre>	int	0 0 0 0 1 1 0 0 0 0
<pre>\$ FIRST_PROGRESSION_OR_RELAPSE:</pre>	chr	"No" "Yes" "No" NA
<pre>\$ MONTHS_TO_FIRST_PROGRESSION :</pre>	num	NA 2 NA NA 17 5 NA NA NA NA
\$ SMOKING :	chr	"Smoked in the past" "Smoked in t
\$ N_STAGE :	chr	"NO" "NO" "NO"
\$ T_STAGE :	chr	"T2 or T3" "T2 or T3" "T2 or T3"
\$ SURVIVAL MONTHS :	num	110 98 110 66 29 7 53 63 23 62

[output] vital_status 存活狀態,這個變數類別為 0 和 1(存活和死亡),無遺失值。

```
> table(lung_cancer$vital_status)
    0    1
221 257
> sum(is.na(lung_cancer$vital_status))
[1] 0
```

[output] SURVIVAL MONTHS 存活時間這個變數的統計量數值都合理,其中有9筆遺

失值,此為範例4-1刪除9筆資料的原因。

>	summa	ry(lung_c	ancer\$SUR	VIVAL_M	ONTHS)		
	Min.	lst Qu.	Median	Mean	3rd Qu.	Max.	NA's
	0.03	23.20	45.80	51.78	73.20	204.00	9

[output] N_STAGE 癌症N分期,這個變數有3個類別,其中有11筆遺失值

[output] SURVIVAL MONTHS 存活時間和 N STAGE 癌症N分期兩個變數一起檢查,

<pre>> lung_cancer[is.na(lung_cancer\$SURVIVAL_MONTH)*1==1 </pre>							
+ is.na(lung_cancer\$N_STAGE)*1==1 ,c(9,13,15)]							
	vital_status	N	STAGE	SURVIVAL_MONTHS			
87	1		<NA $>$	22.74			
98	0		<NA $>$	106.58			
101	1		<NA $>$	30.72			
104	1		<NA $>$	13.33			
113	0		<NA $>$	NA			
120	1	N1	or N2	NA			
134	0		<NA $>$	NA			
138	0		<NA $>$	84.44			
163	1		<NA $>$	38.77			
166	0		<NA $>$	NA			
167	1	N1	or N2	NA			
168	1		<NA $>$	NA			
176	1		NO	NA			
180	0		<NA $>$	NA			
210	0	N1	or N2	NA			

列出有遺失值的筆數共15筆,此為範例4-2刪除15筆資料的原因。

經過以上檢定過程,確認都是遺失值造成的刪除,若是整理過程中造成的資料錯誤, 例如:時間長度為負數,表示資料有問題或整理過程的失誤,此時就要修正錯誤後 再重新執行。

範例4-3、客製化存活曲線

> ggsurvplot() 函數中包含許多可以調整圖形呈現的指令,在沒有另外指定的情況下,都會以預設值的設定,只呈基本的 Kaplan-Meier 存活曲線圖形,接下來透過調整 ggsurvplot() 函數中的指令,美化或在圖形中添加更方便判讀的相關資訊。

#(d) 標註存活時間中位數
ggsurvplot(fit2, pval = TRUE, pval.coord=c(150, 0.95),
surv.median.line = "hv", data = lung_cancer)

#(e) 增加風險人數表格 ggsurvplot(fit2, pval = TRUE, pval.coord = c(150, 0.95), conf.int = TRUE, risk.table = TRUE, data = lung_cancer)

[R程式碼] 格式調整

- ◆ 顏色設定
- palettes = c(color1, color2, ..) 依分組數給定顏色,顏色代碼請 參考色碼表,或指定搭配好顏色的調色盤代碼,預設的調色盤顏色為"hue"。 提供選擇的調色盤顏色有"grey","npg","aaas","lancet","jco", "ucscgb","uchicago","simpsons"和"rickandmorty"

14

- ◆ 標題設定
- title = "",指定圖形標題
- xlab = "",指定X軸標題
- ylab = "",指定Y軸標題設定
- legend.title = "",指定圖例標題
- legend.labs = c("lab1","lab2", ..) ,指定圖例分組名稱

◆ 字型設定,依序指定大小、類型和顏色,不指定則顯示預設值

- font.main = c(16, "bold", "red"), 指定圖形標題字體樣式
- font.x = c(14,"italic","blue"),指定X軸標題字體樣式
- font.y = c(14, "bold.italic", "gray"), 指定Y軸標題字體樣式
- font.tickslab = c(12, "plain", "green"), 指定刻度標籤字體樣式
- fontsize = 數值 指定風險表和累積事件表的字體大小

也可以只設置其中一項,例如:

- font.main = 16,只設定字體大小;
- font.main = "italic",只設定字體類型

癌症N分期的存活曲線比較


```
16
```

- ◆ 線條樣式
- linetype = 數值代碼或線條名稱,指定線條樣式,預設是"strata"每一個 分組線條樣式都不同,可同時指定不同分組不同或相同線條樣式。

例1:若有3個分組,線條樣式都不同

linetype = c(1,2,3) 或

linetype = c("solid", "dashed", "dotted")

例2:若有3個分組,線條樣式都相同

linetype=3 或 linetype ="dotted"

linetype 數值代碼和線條名稱對照表

0. 'blank'	
1. 'solid'	
2. 'dashed'	
3. 'dotted'	
4. 'dotdash'	
5. 'longdash'	
6. 'twodash'	

- ◆ 坐標軸範圍、刻度間距設定
- xlim = c(數值1,數值2) 指定X軸起始和結束範圍
- ylim = c(數值1,數值2) 指定X軸起始和結束範圍
- break.x.by = 數值 指定X軸該度間距
- break.y.by = 數值 指定Y軸該度間距

(a)

(b)

- ◆ 圖例位置設定
- legend = "",圖例位置設置,提供選擇有"top","bottom","left",
 "right" 和 "none"等,其中"none"為不顯示圖例,預設值為"top"。

```
#(a) 圖例位置在上方。預設值,可寫可不寫
ggsurvplot(fit2, pval=TRUE, pval.coord=c(140, 0.95),
           conf.int = TRUE, data = lung cancer,
           legend.labs = c("N0", "N1", "N1 or N2"),
           xlab = "follow up time(month)")
#(b) 不顯示圖例
gqsurvplot(fit2, pval=TRUE, pval.coord=c(140, 0.95),
           conf.int = TRUE, data = lung cancer,
           legend.labs = c("N0", "N1", "N1 or N2"),
           xlab = "follow up time(month)",
           legend = "none")
#(c) 圖例位置在右方
ggsurvplot(fit2, pval=TRUE, pval.coord=c(140, 0.95),
           conf.int = TRUE, data = lung cancer,
           legend.labs = c("N0", "N1", "N1 or N2"),
           xlab = "follow up time(month)",
           legend = "right" )
```


follow up time(month)

21

150

200

- ◆ 其他設定
- axes.offse,指定坐標軸從原點開始(FALSE),預設為 TURE 不從原點開始。

#(a) 坐標軸從原點開始
ggsurvplot(fit2, pval=TRUE, pval.coord=c(140, 0.95),
<pre>conf.int = TRUE, data = lung_cancer,</pre>
<pre>legend.labs = c("N0","N1","N1 or N2"),</pre>
<pre>xlab = "follow up time(month)")</pre>
#(b) 坐標軸不從原點開始
ggsurvplot(fit2, pval=TRUE, pval.coord=c(140, 0.95),
<pre>conf.int = TRUE, data = lung_cancer,</pre>
<pre>legend.labs = c("N0","N1","N1 or N2"),</pre>
<pre>xlab = "follow up time(month)",</pre>
axes.offse = FALSE)

(a)

(b)

以上是使用 survminer 套件中的 ggsurvplot() 函數所繪製的Kaplan-Meier存活曲線,除了基本圖形的呈現,還可以透過指令美化調整成符合需求的圖形,除了上述的範例外,還其它更多的指令可進行調整,此篇僅介紹比較常使用到的相關調整指, 提供初學者入門參考。

臺北醫學大學數據處健康資料加值暨統計中心 eNews 第46期 2021/12

參考資料

1.存活分析,林建甫著,初版,2008,雙葉書局。

2. https://rpkgs.datanovia.com/survminer/index.html.

3. survminer R package: Survival Data Analysis and Visualization