試利用心血管疾病資料(CVD ALL)分析沒有心血管疾病成人之腰圍與收縮壓的關係。(顯著水準設定為 0.05)

1. 請問腰圍與收縮壓的皮爾生相關係數為何?兩者是否存在顯著的線性關係?

答:

(1) 資料檔整理:因題目中分析的對象為沒有心血管疾病的成人,故須將符合此條件的資料篩出。

R-web 分析步驟:

資料處理→資料篩選(篩選條件:心血管疾病=0;建議另存新檔 CVD noHD)

分析結果

• 資料名稱: CVD_All

• **篩選規則:**心血管疾病 == "0"

• 保留變數:ID, 心血管疾病, 年齡, 性別, 追蹤時間, 腰圍, 收縮壓, 舒張壓, 空腹血糖, 高密度脂蛋白, 三酸甘油酯, 檳榔, 飲酒, 家族病史, 抽菸, 抽菸量

• 儲存位置: 使用者個人資料檔 - CVD_noHD

(2)腰圍與收縮壓變項皆為連續型(或稱數值變項),此處要求計算皮爾生相關係數

R-web 分析步驟:

分析方法→相關暨列聯表分析→皮爾生相關係數

→步驟一:資料匯入(CVD noHD)

→步驟二:參數設定(檢定變數:腰圍、收縮壓)

→進階選項(可免設定) →開始分析

分析結果

• 分析方法:皮爾生相關係數

• 資料名稱: CVD_noHD

• 變數名稱:腰圍,收縮壓

虚無假設:相關係數ρ = 0 (雙尾檢定)

• 計算時間: 0.034 秒

• 皮爾生相關係數矩陣^I:

	腰圍	收縮壓	
腰圍	1.000	0.428	
	0.000	0.000	
	57055	56612	
收縮壓	0.428	1.000	
	0.000	0.000	
	56612	57387	

• I:表格內容為皮爾生相關係數 / P-值 / 樣本數

結論:計算出的皮爾生相關係數為 0.428 · 檢定 P 值為 0 · 此值小於顯著 水準 0.05 · 表示此相關係數為顯著有意義;但相關係數值僅有 0.428 表示腰圍與收縮壓之間的線性關係程度不高。

請問腰圍與收縮壓的斯皮爾曼等級相關為何?兩者是否存在顯著的等級相關?

答:

腰圍與收縮壓變項皆為連續型(或稱數值變項),此處要求計算斯皮爾曼等級相關係數

R-web 分析步驟:

分析方法→相關暨列聯表分析→斯皮爾曼等級相關係數

→步驟一:資料匯入(CVD noHD)

→步驟二:參數設定(檢定變數:腰圍、收縮壓)

→進階選項(可免設定) →開始分析

分析結果

• 分析方法:斯皮爾曼等級相關係數

• 資料名稱: CVD noHD

• 變數名稱:腰圍,收縮壓

虚無假設:相關係數ρ = 0 (雙尾檢定)

• 計算時間: 0.131 秒

• 斯皮爾曼相關係數矩陣^I:

	腰圍	收縮壓	
	1.000	0.458	
腰圍	0.000	0.000	
	57055	56612	
	0.458	1.000	
收縮壓	0.000	0.000	
	56612	57387	

• I:表格內容為斯皮爾曼等級相關係數 / P-值 / 樣本數

結論:計算出的斯皮爾曼等級相關係數為 0.458 · 檢定 P 值為 0 · 此值 小於顯著水準 0.05 · 表示此相關係數為顯著有意義;但相關係數值僅 有 0.458 表示腰圍與收縮壓之間的線性關係程度不高。

- 3. 試利用簡單線性迴歸模型建立腰圍預測收縮壓之模型,
 - I. 請問此模型為何?
 - II.腰圍是否與收縮壓有顯著相關?此模型腰圍解釋了收縮壓變異的多少百分比?
 - III.若有一人腰圍為 100 公分,請預測此人平均而言收壓縮何?

答:

I. 題目中須以腰圍預測收縮壓,故收縮壓為依變數,腰圍為自變數,可寫出 迴歸模型

 $Y_i = \alpha + \beta X_i + \epsilon_i \cdot \epsilon_i \sim N(0, \sigma^2)$,其中

Y_i:收縮壓

X_i:腰圍

II. 此處需利用 R-web 的迴歸模式來解釋腰圍與收縮壓之間的關係

R-web 分析步驟:

分析方法→迴歸模式→迴歸分析

→步驟一:資料匯入(CVD_noHD)

→步驟二:參數設定(依變數:收縮壓、自變數:腰圍)

→ 進階選項(可免設定) → 開始分析

分析結果

• **分析方法**:迴歸分析

• 資料名稱: CVD_noHD

依變數名稱:收縮壓

• 自變數名稱:腰圍

• 顯著水準:0.05

• 計算時間: 20.84 秒

• 迴歸模式的變異數分析:

虚無假設:迴歸模式不顯著						
來源	平方和	自由度	均方和	F 檢定統計量	臨界值	p-值 I
source	sum of squares	d.f.	mean square	F-statistic	F(d.f.1,d.f.2,1-α)	p-value
迴歸 regression	4264673.0255	1	4264673.0255	12682.9367	3.8416	< 1e-04 ***
誤差 error	19035271.1745	56610	336.2528			
總和 total	23299944.2	56611				

判定係數(R-square): 18.3%

調整判定係數(adjusted R-square): 18.3%

• I:顯著性代碼: '***' : < 0.001, '**' : < 0.01, '*' : < 0.05,

'#' : < 0.1

迴歸係數估計^I:

係數	估計值	標準差	t 檢定統計量	p值II	參數的 95% 信賴區間 95% C.I. for estimations	
coefficient	estimation	std. err.	t-statistic	p-value	下界	上界
					lower	upper
(截距項)	58.5096	0.5717	102.342	< 2.22e-16 ***	57.389	59.6301
腰圍	0.8189	0.0073	112.6185	< 2.22e-16 ***	0.8047	0.8332

• I:依變數為收縮壓,模式包含常數項

Ⅱ:顯著性代碼: '***' : < 0.001, '**' : < 0.01, '*' : < 0.05,

'#' : < 0.1

結論:分析結果列出變異數分析表及迴歸係數估計表,可整理出結果為

- (1) 變異數分析表中的 P 值(<e-4)小於顯著水準,拒絕虛無假設, 此迴歸模式為顯著
- (2) 迴歸係數估計表中的腰圍檢定 P 值(< 2.22e-16)小於顯著水準· 表示自變項腰圍對於依變項是有影響的
- (3) 此迴歸模式的判定係數 R²僅有 18.3%,解釋能力很低,表示此模式僅能解釋收縮壓 18.3%的變異百分比

III. 由前面分析得到迴歸式·收縮壓=58.5096+0.8189 腰圍當腰圍為 100 時·可得該人的預測收縮壓為 58.5096+0.8189*100=140.3996