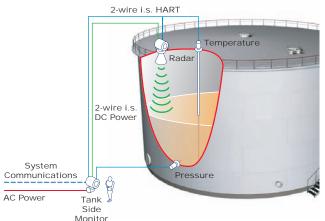
4590 Tank Side Monitor

Inventory Control Field device for tank sensor operation and monitoring and for integration into inventory control systems Software Version 02.03.

Features and benefits


- i.s. power supply and communication for Varec radar tank gauges
- Connects up to 6 HART devices via i.s. 2 wire, for example temperature devices for average temperature measurement and pressure transmitters for HTMS density applications
- Backlit graphical LCD display; operation via 3 optical keys (touch control)
- · User-friendly operating menu (multi-lingual)
- Interfaces to FuelsManager Oil & Gas via 8130 Remote Terminal Unit
- Provides communication to PLC, DCS and SCADA systems
- Various industry standard communication protocols, including
 - Sakura V1
 - EIA-485 Modbus
 - Whessoematic WM 550
 - BPM (compatible with Enraf systems)
- Approved for use in explosion hazardous areas
- Weights & Measure-approved for use in custody transfer applications

Application

The 4590 Tank Side Monitor is a sensor integration and monitoring unit for bulk storage tank gauging applications. It can be used with Varec radar tank gauges and combined with other HART compatible devices.

The 4590 TSM offers the following functions:

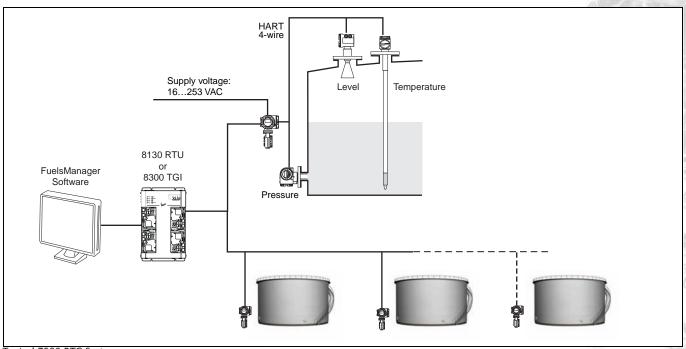
- -intrinsically safe (i.s.) power supply of the connected devices
- -parametrization of the connected devices
- -display of the measured values
- -tank calculations for accurate correction of the tank distortions

Function and system design

The 4590 Tank Side Monitor is a field device for the integration of tank sensors into tank inventory systems. It is used in tank farms, terminals and refineries. It can be used in connection with Varec radar tank gauges for inventory control and high accuracy (custody transfer) applications.

Operating principle

The 4590 TSM is typically installed at the bottom of the tank and allows to access all connected tank sensors.

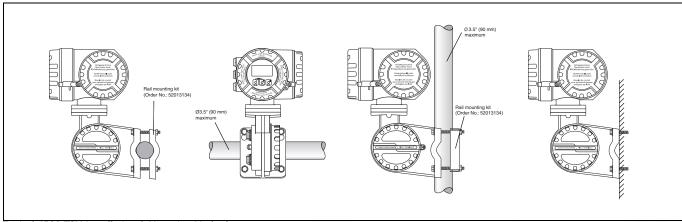

Typical process values measured by the sensors are:

- level
- · temperature (point and/or average)
- water level (measured by capacitive probe)
- hydrostatic pressure (for hydrostatic tank gauging, "HTG", or hybrid tank measurements, "HTMS")
- secondary level value (for critical applications)

The 4590 TSM collects the measured values and performs several configurable tank calculations. All measured and calculated values can be displayed at the on-site display. Via a field communication protocol, the 4590 TSM can transfer the values to an inventory control system.

Overfill Protection

The 4590 TSM can be configured and used as part of an overfill protection system in comjunction with the approved WHG operating mode of the Varec 7500 RTG's radar devices (as described in the TÜV test certificate for the 7500 RTG's WHG operating mode).



Typical 7500 RTG System

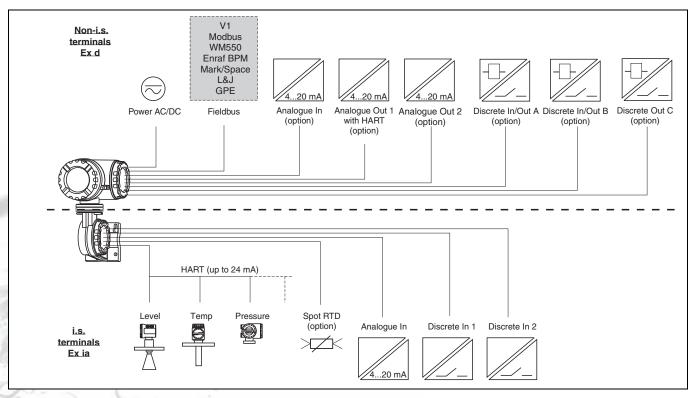
Typical Tank calculations

Setup preset	Installation example	Sensors	measured/ calculated values	required parameters
Direct level measure	ement		T.	<u> </u>
Level only		Level sensor	level	Tank Ref Height
Level + Temperature	Tank Ref Height	Level sensor Temperature sensor (RTD or HART device; optionally with bottm water probe)	level temperature	
Hybrid Tank Measur	ring System (HTMS)			
HTMS + P1,3 ! Note! This mode should be used in non-atmospheric tanks (e.g. pressurised tanks)	P1 Position P1	Level sensor Pressure sensor (P1, bottom) Level sensor Pressure sensor (P1, bottom) Pressure sensor (P3, top)	level density of the measured medium (calculated)	Tank Ref Height P1 Position Min HTMS (minimum level at which HTMS measurement is possible; should be slightly above the position of the P1 sensor) local gravity vapour density air density P3 Position (only for the "HTMS + P1,3" mode)
Hydrostatic Tank Ga	auging (HTG)		T	
HTG P1,3 !Note! This mode should be used in non-atmospheric tanks (e.g. pressurised tanks)	P1-P2 Distance P1 Position	Pressure sensor (P1, bottom) Pressure sensor (P1, bottom) Pressure sensor (P3, top)	level (calculated)	Tank Ref Height local gravity density of the measured medium Min HTG Level (minimum level at which HTG measurement is possible; should be slightly above the position of the P1 sensor) P1 Position P3 Position (only for the "HTG P1,3" mode)
HTG P1,2		Pressure sensor (P1, bottom) Pressure sensor (P2, middle)	level (calculated) density of the measured medium (calculated)	Tank Ref Height local gravity Min HTG Level (minimum level at which HTG
HTG P1,2,3 Note! This mode should be used in non-atmospheric tanks (e.g. pressurised tanks)		Pressure sensor (P1, bottom) Pressure sensor (P2, middle) Pressure sensor (P3, top)		measurement is possible; should be slightly above the position of the P2 sensor) P1 Position P1-P2-Distance P3 Position (only for the "HTG P1,2,3" mode)

Installation Guidelines

Typical 4590 TSM Installation & Mounting Methods

The following information should be used as a guide only; please refer to the operation and maintenance manual for complete installation instructions.


Housing Compartments

The 4590 TSM housing has three separate compartments. The upper terminal compartment and electronics compartment are designated for non-i.s. connections and electronics and are rated EEx d.The lower terminal compartment is designated for i.s. wiring connections and wiring only.

Grounding

The 4590 TSM must be grounded to the tank potential before communication and power connections are made. The connections (A \geq 4mm²) from each outer ground plug of the 4590 TSM to the tank ground must be made before any other wiring connections are made. All grounding must be compliant with local and company regulations and checked before the equipment is commissioned.

Inputs and outputs

Instrument connections for the 4590 TSM

Non IS inputs and outputs

		V1	Modbus	WM550	ВРМ	Mark/Space	L&J Tankway	GPE
Analogue In	Al	- 63	optiona	-	standard	standard	standard	-
Analogue Out 1	AO	standard +HART	option¹ +HART	standard +HART	standard +HART	standard +HART	standard +HART	standard +HART
Analogue Out 2	AO#2	standard	-	standard	-	-	-	standard
Discrete In/Out A	DI#A DO#A	option, s. pos	option, s. pos. 50 of the product structure					
Discrete In/Out B	DI#B DO#B	option, s. pos. 60 of the product structure						
Discrete Out C	DO#C	standard	standard – – – – – –					-

a.see pos. 20 option 4 of the product structure; Modbus without in- or output does not provide an Ex d HART bus!

IS inputs and outputs

		V1, Modbus, WM550, BPM, Mark/Space, L&J Tankway, GPE
HART		standard
IS RTD		option, s. pos. 40 of the product structure
IS Discrete In 1	IS DI#1	standard
IS Discrete In 2	IS DI#2	standard
IS Analogue In	IS AI	standard

Values Transmitted by the Field Protocols

The 4590 Tank Side Monitor supports all of the following industry standard communication protocols allowing it to be integrated with existing instrumentation and connect to host computer systems without the need for additional hardware. These protocols allow for piece-by-piece replacement and upgrading of older technologies to modern radar solutions.

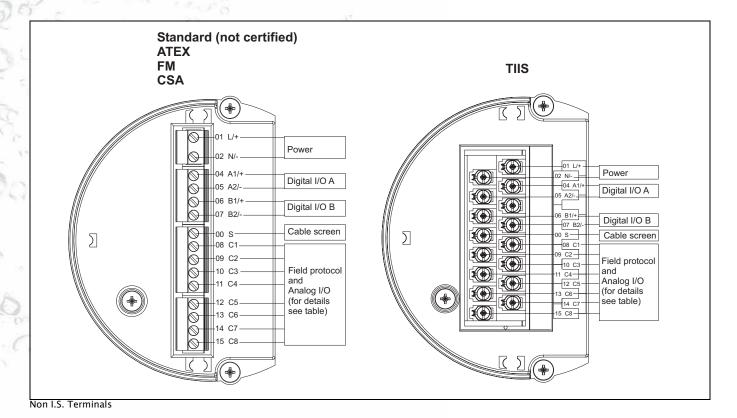
Tank Value	Symbol	V1 – old	V1 – new	Modbus	WM550	ВРМ	Mark/ Space	L&J Tankway	L&J Tankway Servo	GPE
Level	L	yes	yes	yes	yes	yes	yes	yes	yes	yes
Temperature (Product)	T _P	yes	yes	yes	yes	yes	yes	yes	yes	yes
Observed Density	D _{obs}	-	yes	yes	yes	yes	-	-	yes	-
Water Level	L _w	-	yes	yes	yes	yes	-	-	yes	_
Pressure 1 (Bottom)	P ₁	-	yes	yes	yes ¹	yes	-	-	-	_
Pressure 2 (Middle)	P ₂	-	yes	yes	yes ^a	-	-	-	-	_
Pressure 3 (Top)	P ₃	-	yes	yes	yes	yes	-	-	-	-
Measured Level	L _M	-	-	yes	yes¹	-	-	-	-	_
Level Correction	L _c	-	-	yes	yes ¹	-	-	-	-	_
Percentage Level	L _%	-	-	yes	yes	-	-	-	-	-
Vapour Temperature	T _v	-	yes	yes	yes¹	yes	-	-	_	-
Air Temperature	T _A	-	-	yes	yes ¹	yes	-	-	-	-
Level Flow Rate (Rate of change of level)		-	-	yes	yes ¹	-	-	-	-	-
Volumetric Flow Rate		-	-	yes	yes¹	-	-	-	-	-
General Purpose Value 1	GP ₁	-	yes	yes	yes¹	-	-	-	-	-
General Purpose Value 2	GP ₂	-	yes	yes	yes¹	-	-	-	-	-
General Purpose Value 3	GP ₃	-	-	yes	yes¹	-	-	-	-	-
General Purpose Value 4	GP ₄	-	-	yes	yes¹	-	-	-	-	-
Multi-Element Temperatures	T ₍₁₎ to T ₍₁₆₎	-	yes	yes	T ₍₁₎ to T ₍₁₅₎	-	-	-	-	-
Alarm/Discrete Values		yes ^b	yes ²	yes	yes	yes ^c	yes ^d	yes ^e	yes ⁵	-
Discrete Output Control		-	-	yes	-	-	-	-	-	1
Additional		-	4-20mA ^f	yes	Level %	-	-	Temp ^g	-	4-20mA ⁶
Protocol Documentation		KA 246F	KA 246F	KA 245F	KA 247F	KA 248F	KA 249F	KA 250F	KA 250F	KA 251F

a.Only accessible through WM550 extended tasks (51&52); not available on older control room systems.

b.The protocol allows 2 alarm and 4 general purpose flags which can be connected to any alarm or discrete input. c.Level L & H alarm, 4 alarms and 2 general purpose flags which can be connected to any alarm or discrete input.

d.The protocol allows 2 digital alarm values which can be connected to any alarm or discrete input.

e.The protocol allows 2 digital values which can be connected to any alarm or discrete input.

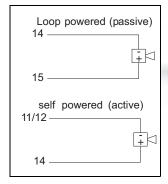

f.One additional value "4-20mA" which can be connected to any value, however range of value sent is limited (see KA 246F for details).

g.One additional value "Temp2" which can be connected to any value, however the range of value sent is limited (see KA 250F for details).

Non I.S. Terminals

Terminal		VI	EIA-485 Modbus	Whessoe WM550	ВРМ	Mark/ Space	L&J Tankway	GPE
01 L/+	Power supply	Power supply AC or DC						
02 N/-								
04 A1/+	Discrete I/O	Discrete I/O A +						
05 A2/-	Discrete I/O	4 -						
06 B1/+	Discrete I/O I	B +						
07 B2/-	Discrete I/O I	3 -						
00 S	Cable screen							
08 C1		4 20 mA output ^a #2	not used ^b	4 20 mA output¹ #2	not used ²	V+	Power	4 20 mA output¹ #2
09 C2		V1A	485-B	Loop 1-	Т	Space	Encoder	Loop 1-
10 C3		V1B	485-A	Loop 1+		Mark	Computer	Loop 1+
11 C4		0 V ¹	0 V	0 V ¹	0 V	0 V (V-)	Ground	0 V ¹
12 C5		0 V	•	•		•	•	-
13 C6		4 20 mA o	utput #1 + HAR	T				
14 C7		discrete output 1C	4 20 mA input ³	Loop 2-	4 20 mA i	nput ³		Do not connect
15 C8		discrete output 2C	+24 V ¹	Loop 2+	+24 V ¹			

a.In case an "Ex d" rated 4-wire level gauge version is used, the power supply can be obtained from these terminals (21V \pm 10%). b.The internal voltage at this terminal is 0 V, however, shielding and signal common should be connected to terminal 11 or 12.

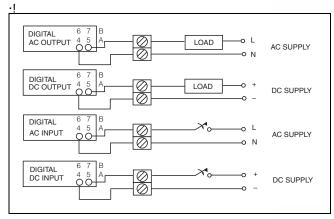


Grounding of the fieldbus screen

The screen of the fieldbus cable should be connected to ground at both ends. If this is not possible due to signal disruption by potential equalisation currents, it is advisable to connect the screen of the fieldbus cable to terminal "00 S" at the 4590 TSM and to ground at the other end. The "00S" terminal provides a 500 V capacitor between the cable screen and tank ground potential.

Non-i.s. 4 ... 20 mA analogue input

Depending on the selected fieldbus communication board, a non-i.s. self-powered or loop powered analogue transmitter can be connected. The analogue signal for the loop powered transmitter can be connected to the terminals 14 (-) and 15 (+24 Vdc). The maximum supply current for the analogue transmitter is limited to 24

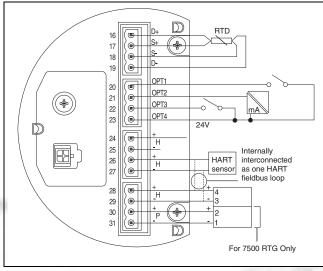

mA. The analog signal for a self powered transmitter should be connected to terminals 11 or 12 and 14.

Non-i.s. 4 ... 20 mA analogue output

For all field communication boards except the Modbus Option without analog in/output, a non-i.s. 4...20mA output is available. Via Software settings, this analogue output can be connected to any parameter in the 4590 TSM. The analogue output is available between terminals 13 (+) and 12 (-). From SW 02.01.xx onwards, an additional HART signal is available at terminal 13.

Discrete in and output

The 4590 TSM can be equipped with up to 2 discrete I/O modules. These modules can be used for interfacing to non-i.s. discrete in- or outputs. Input and output voltage and current ranges depend on the type of selected module installed in the relevant I/O slot. Terminals 4 and 5 correspond to discrete I/O slot A, terminals 6 and 7 correspond to discrete I/O slot B.



Discrete Inputs and Outputs

8

Note! 250 VAC is the maximum load that can be connected.

I.S. Terminals

I.S. Terminals

Terminal	Designation	Meaning
16	D+	+ RTD drive ^a
17	S+	+ RTD sense ¹
18	S-	– RTD sense ^{1,b}
19	D-	- RTD drive ^{1,2}
20	OPT1	Discrete Input 1
21	OPT2	Analog Input 1 (4 20 mA)
22	OPT3	Discrete Input 2
23	OPT4	Option +24 V
24	H+	+HART comm.c
25	H-	-HART comm.d
26	H+	+HART comm. ³
27	H-	−HART comm.⁴
28	H+	+HART comm. ³
29	H-	-HART comm. ⁴
30	P+	+ i.s. power for FMR S-series ³ (terminal 2 of FMR)
31	P-	- i.s. power for FMR S-series ⁴ (terminal 1 of FMR)

a.These terminals should be left unconnected if RTD has not been selected in feature 40 of the product structure.

b.For a 3-wire RTD, terminals 18 and 19 should be connected together. c.These terminals share the same HART signal.

d.These terminals share the same i.s. 0 V signal.

Connection of HART instruments

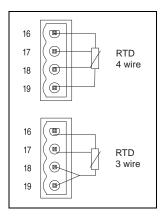
Tank sensors

The 4590 TSM can interface to a maximum of 6 i.s. HART sensors. All HART sensors are connected to one HART multi-drop communication loop. In order to keep wiring simple, 3 interconnected terminal pairs are available. The terminal pairs are marked respectively H+ and H-.

Power supply

The 4590 TSM provides intrinsically safe power for 2-wire tank sensors. It also can provide intrinsically safe power for the 4-wire instrument Varec radar tank gauges. For supplying extra i.s. power to the 7500 RTG's, additional power terminals are available, marked as P+ and P-. Although it is possible to use only 3 wires between the 7500 RTG's and the NRF590, by combining the P- and H- wires, it is recommended to use a double pair of screened and twisted cable.

Grounding of the cable screen (for Varec radar tank gauges S)


The screen of the cable connecting the Varec radar tank gauges to the 4590 TSM should be grounded at the 4590 TSM, **not** at the Varec radar tank gauges.

Scan time

The data of connected HART sensors is constantly scanned and updated in the internal data base. The scanning sequence is based on the priorities of the measurements (level – prio 1, temperature – prio 2, pressure – prio 3,...). Typically, a value change on the HART multidrop loop is displayed after a 2 seconds delay (for priority 1 values).

Spot RTD

A spot RTD can be connected to the 4590 TSM if the option is installed. For 4-wire connection, the RTD must be connected to the 4 available terminals marked D+, S+, S- and D-. For 3-wire connection, the RTD should be connected to the same 4 terminals. The terminals D- and S- should be connected together directly at the 4590 TSM terminals.

RTD resistance is measured and recalculated at least every second.

Human interface

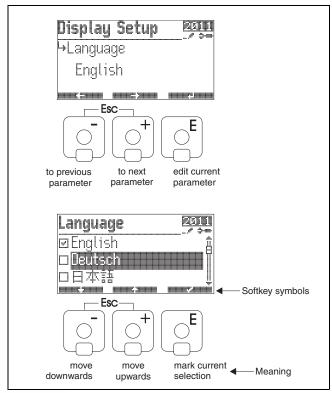
Display and operating elements

Optical keys

The optical keys allow the 4590 TSM to be operated without the housing being opened.

From Software Version 02.xx.xx onwards they function as softkeys, i.e. their meaning varies depending on the current position within the operating menu. The meaning is indicated by softkey symbols in the bottom line of the display.

Liquid crystal display (LCD)


Four lines with 20 characters each. Display contrast adjustable through key combination. The backlight of the display is activated during operation for user defined time (30 sec ... continuous backlight).

The following display languages can be selected by the user:

- -English
- -German
- -Japanese
- -Simplified Chinese
- -Dutch
- -Spanish
- -French
- -Italian

Note! Chinese font: GB18030, CITS Committee approved

Note! Japanese font: JIS X 208-1997 including Hiragana, Katakana asnd Kanji

LCD and Optical Keys

Operation of HART instruments

For the following instruments, the operating menu can be accessed on the display of the 4590 TSM:

- 7200 series Radar Tank Gauges
- 7500 series Radar Tank Gauges
- 453x ATC's average temperature devices
- · Whessoe Varec 1646 Temperature Transmitter

Cerabar M: PMC/PMP4x

Cerabar S: PMC/PMP7x

Cerabar: PCM/PMC73x/63x

Deltabar: PMD/FMD23x/63x

Deltabar S: PMD/FMD7x

Any other HART instrument can be operated via the Generic HART menu (allowing all 4 universal HART values to be accessed).

Operation with "ToF Tool Field Tool Package"

The 4590 TSM can also be operated via the "ToF Tool – Field Tool Package". This program supports commissioning, securing of data, signal analysis and

documentation of the instruments. It is compatible with the following operating systems: WinNT4.0, Win2000 and Win XP.

The "ToF Tool - Field Tool Package" supports the following functions:

- -Online configuration of transmitters
- -Loading and saving of instrument data (Upload/ Download)
- -Documentation of measuring point

Corrections

The 4590 TSM can automatically calculate the following corrections:

- Correction for the Hydrostatic Tank Deformation (HyTD)
- Temperature Correction for Thermal Expansion of the Tank Shell (CTSh)

Flow calculation

The 4590 TSM can calculate the approximate flow based on the rate of level change and a linear conversion, to volumetric flow.

Accessories

Rail mounting kit

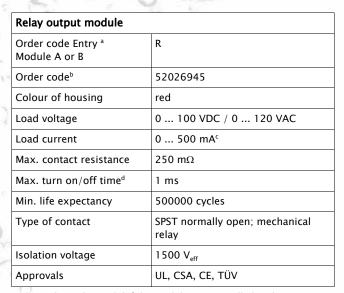
For rail mounting the 4590 TSM to vertical or horizontal pipe. (Order-Number: 52013134)

Discrete I/O modules

The 4590 TSM can be equipped with 1 or 2 discrete I/O modules. (see position 50 and 60 of the order codes)

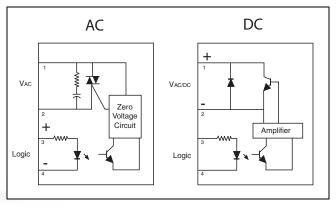
1.70 (43.1) 1.00 (25.4)
(25.4) (6.35) (7.6) (7.6) (8.1) (7.8) (8.1) (17.8) (1.30) (20) (6.1) (7.8) (1.0) DIA. (5 PLACES)
BOTTOM VIEW (2.5) • • • • • • • • • • • • • • • • • • •

Standard Mechanical Diagram for all I/O Modules

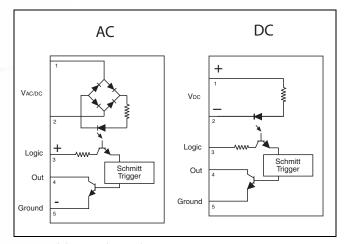

Output modules	AC voltage		DC voltage			
Order code entry	Order code entry					
^a Module A or B	J	G	Н	K		
Order Code ^b	52012959	52012960	52012961	52012962		
Colour	black	black	red	red		
Load voltage	24 140 V AC	24 250 V AC	3 60 V DC	4 200 V DC		
Load current	30 500 r	30 500 mA eff. ^c		20 500 mA eff. ¹		
Typ. power dissipation	1 W/A		1 1.5 W/A			
Transient protection	Meets IEEE472		Meets IEEE472			
Type of contact	SPST normally open Zero crossing turn-on		SPST normally open			
Optical isolation	yes		yes			
Isolation voltage	4000 V eff.		4000 V eff.			
Approvals	UL, CSA, CE	, TÜV	UL, CSA, CE, TÜV			

a.This order code is valid if the module is preinstalled in the 4590 TSM as module A or module B $\,$

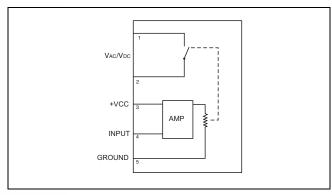
b.This order code is valid if the module is ordered as an accessory. c.This upper limit of the load current is determined by the 4590 TSM


Input modules	AC voltage		DC voltage)	
Order code entry	/				
^a Module A or B	В	D	С	E	
Order code ^b	52012955	52012956	52012957	52012958	
Colour of housing	yellow	yellow	white	white	
Input voltage	90 140 V AC	180 264 V AC ^c	3 32 V DC	35 60 V DC	
Nominal input resistance	22 kΩ	60 kΩ	22 kΩ	60 kΩ	
Max. pick-up voltage	90 V AC	180 V AC	3 V DC	35 V DC	
Min. drop-out voltage	25 V AC	50 VAC	1 V DC	9 V DC	
Input current @ max. voltage	8 mA rms		8 mA rms		
Typ. power dissipation	1 1.5 W/	A	1 1.5 W/A		
Transient protection	Meets IEEE472		Meets IEEE472		
Optical isolation	yes		yes		
Isolation voltage	4000 V rms		4000 V rms		
Approvals	UL, CSA, CE	, TÜV	UL, CSA, CE, TÜV		

- a.This order code is valid if the module is preinstalled in the 4590 TSM as module A or module B.
- b.This order code is valid if the module is ordered as an accessory. c.This upper limit of the input voltage is determined by the 4590 TSM .



- a.This order code is valid if the module is preinstalled in the 4590 TSM as module A or module B.
- b.This order code is valid if the module is ordered as an accessory. c.For inductive loads, use diode suppression or RC network to improve contact life.


d.including debounce

Output Module AC and DC Voltage

Input Module AC and DC Voltage

Relay Output Module

Technical Specifications

The following specifications apply to the model 4000 ATT over the normal (ambient) operating temperature range.

General

Manufacturer	Varec, Inc.
Designation	4590 Tank Side Monitor
Function	

Physical

Net weight	17.6 lbs (8 kg)
Shipping weight	
Enclosure	Explosion proof die-cast epoxy coated aluminum Rated IP65 (NEMA 4)
Conduit entries	3 Non i.s. entries - M20x1.5. 2 i.s. entries - M25x1.5. internal diameter of the cable entry is 16 mm. Optional Adaptors EEx d M20x1.5 G½ ½" NPT ¾" NPT (max. 2 cable entries)

Power

Power supply	55 264 VAC; insensitive to polarity / CSA approved: 55 250 VAC
	18 55 VAC/DC
Power consumption	370 mA @ 24 VDC 200 mA @ 48 VDC 75 mA @ 125VAC 45 mA @ 220 VAC
Fuse	Internal (on primary power)

Environmental

Ambient	-40 °C +60 °C
temperature	(-40 °F +140 °F)
Storage	−55 °C 85 °C
temperature	(−67 °F185 °F)
EMC	Interference emission to EN 61326, Equipment class A Interference immunity to EN 61326 Use shielded signal lines for installation.
Overvoltage Protection	Internal 600 Vrms surge arresters which have been tested against 10 kA transient discharges.

Certifications & Approvals

CE mark

The measuring system meets the legal requirements of the EC-guidelines. Varecconfirms the instrument passing the required tests by attaching the CE-mark.

FΜ

FM XP - Class I, Div 1 Groups A-D;

Note the Installation Drawings ZD 084F and ZD 085F (IS 4–20 mA Option Module)

CSA

FM XP - Class I, Div 1 Groups A-D;

Note the Installation Drawings ZD 103F and ZD 104F (IS 4-20 mA Option Module)

ATEX

ATEX II 2 (1) G EEx d (ia) IIC T4;

Note the Safety Instructions XA 160F and XA 169F (IS 4–20 mA Option Module)

Custody transfer approvals

NMi type approval

NMi initial verification, type approval

PTB initial verification, type approval

External Standards and Guidelines

EN 60529 - Protection class of housing (IP-code)

EN 61010 - Safety regulations for electrical devices for measurement, control, regulation and laboratory use.

EN 61326 - Emissions (equipment class B), compatibility (appendix A - industrial use)

API MPMS Ch. 3.1A – Standard Practice for Manual Gauging of Petroleum and Petroleum Products in Stationary Tanks.

API MPMS Ch. 3.1B – Standard Practice for Level Measurement of Liquid Hydrocarbons in Stationary Tanks by Automatic Tank Gauging

API MPMS Ch. 3.3 – Standard Practice fro Level Measurement of liquid Hydrocarbons in Stationary Pressurized Storage Tanks by Automatic Tank Gauging

API MPMS Ch. 3.6 - Measurement of Liquid Hydrocarbons by Hybrid Tank Measurement Systems

API MPMS Ch. 7.4 – Static Temperature Determination Using Fixed Automatic Tank Thermometers

ISO 4266 / Part 1 - Petroleum and liquid petroleum products -Measurement of level and temperature in storage tanks by automatic methods - Part 1: Measurement of level in atmospheric tanks

ISO 4266 / Part 3 - Petroleum and liquid petroleum products -Measurement of level and temperature in storage tanks by automatic methods - Part 3: Measurement of level in pressurized storage tanks (non refrigerated)

ISO 4266 / Part 4 - Petroleum and liquid petroleum products -Measurement of level and temperature in storage tanks by automatic methods - Part 4: Measurement of temperature in atmospheric tanks

ISO 4266 / Part 6 - Petroleum and liquid petroleum products -Measurement of level and temperature in storage tanks by automatic methods - Part 6: Measurement of temperature in pressurized tanks

ISO 15169 – Petroleum and liquid petroleum products – Determination of volume, density and mass of the contents of vertical cylindrical tanks by Hybrid Tank Measurement Systems OIML – R85 – Organisation Internationale de Métrologie Légale – Automatic level gauges for measuring the level of liquid in fixed storage tanks.

Non-IS inputs and outputs

Analogue 4...20 mA input

Internal load (to ground)	110 Ω
Measuring range	0 26 mA
Accuracy	$\pm 15~\mu\text{A}$ (after linearisation and calibration)

Analogue 4...20 mA outputs

Output current	3 24 mA
Output voltage	$U = 24 \text{ V} - I_{LOAD} 400 \Omega$
Output load	max. $500~\Omega$
Accuracy	$\pm 15~\mu\text{A}$ (after linearisation and calibration)
HART options ^a	Slave, address # 0: 4 20 mA active Slave, address #1 - #15: fixed current (user selectable) Master: max. current (≤ 24 mA) selectable by user; typically 6 HART instruments (each 4 mA) can be connected ^b

a.The second analogue output (available for V1, WM550 and GPE) has no HART option.

Discrete output C (for V1 protocol)

Load voltage	3 100 V
Load current	max. 500 mA
Type of contact	Mechanical latching relay
Isolation voltage	1500 V
Approvals	UL, CSA

Technical Data of the IS inputs and outputs

HART input loop

Source voltage	$U = 25 \text{ V} - I_{Load} \times 333 \Omega \text{ (typically)}$
total I _{max}	Start-up currents of all connected HART devices may not exceed a total of 27 mA
connectable sensors	depending on current consumption (including start-up current)

Spot RTD input (option, s. pos. 40 of the product structure)

Measuring range	10 600 Ω
Excitation current	typ. 400 μA, max. 2000 μA

Type of Sensor	Nominal value	Temp _{min}
Pt100 (385) IEC751 Pt100 (389) Pt100 (392) IPTS- 68	100 Ω @ 0 °C (≈ 32 °F)	-200 °C (≈ -330 °F)
Cu90 (4274)	100 Ω @ 25 °C (≈ 77 °F) [90 Ω @ 0 °C (≈ 32 °F)]	-100 °C (≈ -150 °F)
Ni120 (672)	120 Ω @ 0 °C (≈ 32 °F)	-60 °C (≈ -75 °F)
Ni100 (618) DIN 43760	100 Ω @ 0 °C (≈ 32 °F)	-60 °C (≈ -75 °F)
Type of Sensor	Temp _{max}	Accuracy ^a
Pt100 (385) IEC751 Pt100 (389) Pt100 (392) IPTS- 68	+600 °C (≈ +1110 °F)	±0.1 °C (≈ ± 0.2 °F)
Cu90 (4274)	+250 °C (≈ +480 °F)	±0.1 °C (≈ ± 0.2 °F)
Ni120 (672)	+180 °C (≈ +350 °F)	±0.1 °C (≈ ± 0.2 °F)
Ni100 (618) DIN 43760	+180 °C (≈ +350 °F)	±0.1 °C (≈ ± 0.2 °F)

a. Accuracy of converter, may be influenced by element accuracy

IS Analogue 4...20 mA input

Source voltage	$U = 25 \text{ V} - I_{Load} \times 333 \Omega \text{ (typically)}$
Internal load (to ground)	100 Ω
Measuring range	0 26 mA
Accuracy	$\pm 15~\mu\text{A}$ (after linearisation and calibration)
Usage	Source for Discrete Inputs / Source for 4 20 mA loop device

Discrete inputs

Active voltage ("closed circuit")	min. 9 V (default)
In-active voltage ("open circuit")	max. 7 V (default)
Active high current	4 mA
Switching hysteresis	2 V

b.Start-up current of the HART instruments has to be taken into account

Field Communications

EIA-485 MODBUS

No. of units	Maximum 32 instruments per loop
Baud rate	600 / 1,200 / 2,400 / 4,800 / 9,600 / 19,200 bits selectable
Parity	Odd, Even, None, selectable
Cable	3-wire twisted cable with screening (DGND is connected to the ground cable)
Topology	Serial bus, electrically isolated, tree structure
Functionality	Slave Only Modbus provides Varec MFT parameter mapping for easier setup in retrofit applications. It provides direct connection to PLC and DCS systems.
Distance	Maximum 3,600 ft (1,200 m) including limbs or branches (negligible with branches under 3 m)
Isolation	Bus inputs are electrically isolated from the other electronics

Bidirectional serial pulse (V1 protocol)

No. of units	Maximum 10 instruments per loop
Baud rate	3,300 BPS
Cable	Two wire (twisted pair) unscreened cable
Transmission distance	Maximum 18,000 ft (6,000 m)
Versions	V1 (new V1) MDP (old V1) BBB (old V1) MIC+232 (old V1) (in preparation)
Topology	Serial bus, tree structure
Isolation	Serial communication circuit isolated from other circuits

GPE

No. of units	16
Baud rate	2,400 or 4,800
Cable	Four (4) wire
Topology	Current loop

Whessmatic 550

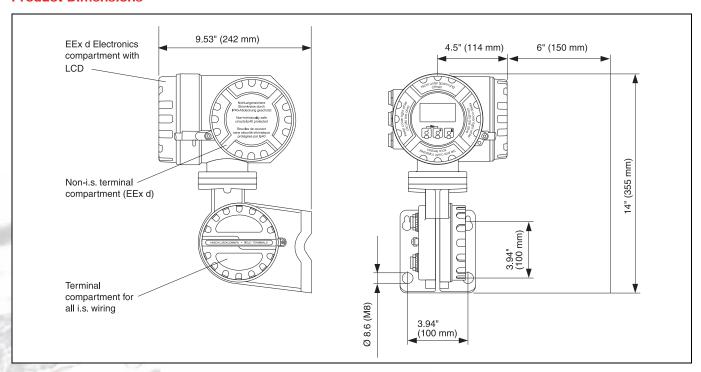
No. of units	16 instruments per loop
Baud rate	1,200 / 2,400 bit/s
Cable	4-wire, twisted pairs with screening
Transmission distance	Depending on specifications Max. distance: 7000 m
Topology	20 mA dual (Redundent) current loop
Instrument address	Setting by DIP switches on communication board
Isolation	Current loop circuit isolated from other circuits

Mark/Space

•	
No. of units	50+ (Depending on specifications; consult a Varec Engineer)
Baud rate	1,200 / 2,400 / 4,800 / 9,600 / 19,200 bits
Cable	Four (4) wire, twisted pairs
Transmission distance	Depending on specifications
Topology	Serial bus, tree structure
Isolation	Serial communication isolated from other circuits
Functions	Tankway supports product level, temperature and discrete inputs.

Enraf Bi-Phase Mark (GPU-BPM)

No. of units	Maximum 10 instruments per loop
Baud rate	1,200 / 2,400 bits, selectable
Cable	Two wire, twisted cable with screening
Transmission distance	Maximum 10 km
Topology	Serial bus, electrically isolated, tree structure
Isolation	Serial communication circuit isolated from other circuits
Compatibility	The 4590 TSM is fully compatible to ENRAF (802, 812), 811, 854 and 954 series servo gauges, 813 MGT (mechanical gauge transmitter), 872, 873 and 973 series Radar gauges, 874 AIM (Analogue Input Module) and the 875 VCU (Valve Command Unit).


L&J Tankway

No. of units	50+
Baud rate	1200
Cable	Four (4) wire, twisted pairs
Functions	Tankway supports product level, temperature and discrete inputs.

HART interface

IS (intrinsically safe)	HART Master for measuring device connection
,	user settable: HART Master HART Slave (active 4–20 mA when address is "0")

Product Dimensions

Order Codes

Please consult your local sales representative for product options.

www.varec.com

Corporate Headquarters 5834 Peachtree Corners East Norcross, GA 30092 Tel: +1 (770) 447-9202 Toll Free: +1 (866) 698-2732 Fax: +1 (770) 662-8939 **Your Official Representative**

If no offical representative is listed here, please visit www.varec.com to find your local representative.

© Varec, Inc. All Rights Reserved. This document is for information purposes only. Varec, Inc. makes no warranties, express or implied, in this summary. The names of actual companies and products mentioned herein may be the trademarks of their respective owners.